Светочувствительные рецепторы

Кожа, как наружный покров, выполняет следующие функции:

• защитную,

• выделительную,

• обменную,

• дыхательную,

• сенсорную и др.

У человека выделяют три основных вида кожной чувствительности: тактильную — чувство давления и прикосновения; температурную — тепловую и холодовую и болевую (ноцицептивную).

В коже располагаются различные рецепторные образования. Наиболее простым типом сенсорного рецептора являются свободные нервные окончания. Более сложную организацию имеют морфологически дифференцированные образования, такие как осязательные диски (диски Меркеля), осязательные тельца (тельца Мейснера), пластинчатые тельца (тельца Пачини) — рецепторы давления и вибрации, колбы Краузе, тельца Руффини и др.

Большинству специализированных концевых образований присуща предпочтительная чувствительность к определенным видам раздражении и только свободные нервные окончания являются полимодальными рецепторами.

Тактильная рецепция (механорецептивная чувствительность). Типичные механорецепторы, как правило, представляют собой инкапсулированные образования. Их называют поверхностными концевыми органами, т. к. они в коже расположены поверхностно. Это диски Меркеля, тельца Мейснера, тельца Пачини и др. Тельца Пачини рассматривают как общую модель механорецептора, они являются наиболее распространенными в организме специализированными тканевыми рецепторами и реагируют на быстрые изменения прикосновения — давления. Тельца Пачини напоминают луковицу. Каждое тельце состоит из многослойной наружной капсулы, внутренней колбы и заключенной в ней части афферентного нервного волокна. К каждому тельцу подходит одно афферентное волокно, которое, входя во внутреннюю капсулу, теряет миелиновую оболочку. По ходу терминал и имеют место пальцеобразные выступы.

Механический стимул, действуя на тельце Пачини, трансформируется элементами капсулы, после чего эта модифицированная механическая сила деформирует мембрану нервного волокна, которая (возможно ее пальцевидные выросты) является местом преобразования механической деформации в электрическую энергию рецепторного потенциала. После того как рецепторный потенциал достигает определенного критического значения, в рецепторе начинает генерироваться потенциал действия. Полагают, что местом возникновения потенциала действия в тельцах Пачини является область первого перехвата Ранвье.

Характеризуя тактильную чувствительность, различают пространственную чувствительность, которая характеризуется пространственным порогом, и чувствительность, которая определяется по силовому порогу. Под пространственным порогом тактильной чувствительности понимают то наименьшее расстояние между двумя точками кожи или слизистой оболочки, при одновременном раздражении которых возникает ощущение двух прикосновений. Он характеризует пространственную различительную способность кожи или слизистой оболочки. Наибольшей различительной способностью обладают: кончик языка, губ, ладонная поверхность пальцев и др., наименьшей — голень, спина, бедро, плечо. Отличия в пространственном различении связаны главным образом с различными размерами кожных рецепторных полей (от 0,5 кв. мм до 3 кв. см) и со степенью их перекрытия. Пространственный порог определяется методом эстезиометрии.

Температурная чувствительность.Температура человека характеризуется значительным постоянством, поэтому информация о температуре внешней и внутренней среды имеет важное значение для осуществления механизмов терморегуляции.

Терморецепторы располагаются в коже, на роговице глаза, в слизистых оболочках, в ЦНС (гипоталамус). Различают два вида терморецепторов — тепловые и холодовые. Считают, что к температурным воздействиям чувствительны специализированные рецепторные образования тельца Руффини (воспринимают тепло), колбы Краузе (воспринимают холод), а также свободные нервные окончания.

На кожной поверхности температурные точки расположены неравномерно и залегают на различной глубине. Холодовые рецепторы расположены более поверхностно (0,17 мм), чем тепловые (0,3 мм). Самое большое количество термочувствительных точек находится на лице, в области губ и век. Тепловых точек примерно в 10 раз меньше, чем холодовых, а на некоторых участках тепловые точки отсутствуют (периферия роговицы и конъюктива глаза).

Большинство терморецепторов имеют локальные рецептивные поля и реагируют на отклонение температуры повышением частоты генерируемых импульсов, которое наблюдается в течение всего времени действия стимула.

В определенных условиях холодовые рецепторы могут возбуждаться теплом (свыше 45 С). Этим объясняется возникновение острого ощущения холода при быстром погружении в горячую воду.

В настоящее время считают, что наиболее важным фактором, определяющим активность терморецепторов и формирования в последующем ощущения, является не изменение температуры, а ее абсолютное значение.

Одним из методов измерения температурной чувствительности является термоэстезиометрия. Этот метод заключается в определении плотности расположения тепловых и холодовых рецепторов на разных участках тела. Вторым методом является исследование функциональной мобильности терморецепторов.

Болевая (ноцицептивная) чувствительность.Болевая чувствительность имеетособое значение в приспособлении организма, т. к. она сигнализирует об опасности при действии повреждающих факторов. Болевое ощущение может возникать либо при воздействии повреждающего фактора на специальные рецепторы — ноцицепторы, либо при действии сверхсильных раздражителей на различные рецепторы.

Рецепторы боли (ноцицепторы) кожи и слизистых оболочек представлены свободными неинкапсулированными нервными окончаниями, которые могут иметь самую разнообразную форму (спиралей, пластинок, волосков и др.).

По механизму возбуждения ноцицепторы делятся на две группы:

• механоноцицепторы;

• хемоноцицепторы.

Механоноцицепторы реагируют на механические повреждения открытием каналов для ионов натрия. Этот тип ноцицепторов реагирует не только на механические повреждения, но и на чрезмерные тепловые и холодовые раздражители.

Хемоноцицепторы реагируют на химические вещества (алгогены), под воздействием которых их субсинаптическая мембрана деполяризуется.

Возбуждение от механоноцицепторов проводится по А-дельта волокнам со скоростью 5-15 м/с.

Эти возбуждения обеспечивают ощущение быстрой, острой, хорошо локализованной боли — эпикритической боли. Возбуждение от хемоноцицепторов проводится по С волокнам со скоростью 0,5-3 м/с и формирует ощущение медленной неприятной, плохо локализованной боли — протопатической боли.

Проведение соматосенсорной чувствительностиосуществляется в основном по двум путям лемнисковому и спиноталамическому.

Лемнисковый путь обеспечивает передачу в мозг сигналов о прикосновении к коже и давлении на нее. Особенностью этого пути является быстрая передача наиболее тонкой информации, дифференцированной по силе и месту воздействия. Первые нейроны этого пути находятся в спинальном ганглии. Их аксоны в составе задних столбов доходят до нежного и клиновидного ядер продолговатого мозга, где происходит переключение сигналов на вторые нейроны.

Аксоны вторых нейронов образуют медиальный лемнисковый тракт и после перекреста направляются в специфические ядра таламуса (вентробазальный комплекс). В этих ядрах расположены третьи нейроны этого пути, их аксоны заканчиваются на клетках первой соматосенсорной области коры.

Спиноталамический путь. Первые нейроны этого пути расположены в спинальном ганглии. Эти нейроны посылают в мозг медленно проводящие нервные волокна. Вторые нейроны данного пути локализуются в сером веществе спинного мозга, а их аксоны в составе восходящего спиноталамического тракта после перекреста на спинальном уровне направляются в вентробазальный комплекс ядер таламуса, в вентральные неспецифические ядра таламуса, ядра ствола мозга и гипоталамус. В этих ядрах локализуются третьи нейроны спиноталамического пути, аксоны которых заканчиваются в первой и второй соматосенсорной зоне коры.

Тактильная чувствительностьЧасть соматовисцеральной системы, обеспечивающая чувство осязания, включает несколько разновидностей механорецепторов кожи, представленных свободными нервными окончаниями либо инкапсулированными, т. е. заключенными в капсулу из соединительной ткани или видоизмененных клеток эпидермиса (рис. 17.4).

Свободные нервные окончания иннервируют волосяные фолликулы пушковых волос, покрывающих большую часть тела человека, а также грубых волос, растущих на голове, в подмышечных впадинах, на лобке, а у мужчин еще и на лице. Свободные нервные окончания волосяных фолликулов являются механорецепторами и возбуждаются при смещении волос или их подергивании. Другая разновидность свободных нервных окончаний имеется в эпидермисе и в сосочковом слое дермы, большинство из них являются ноцицепторами или терморецепторами, но некоторые принадлежат к механорецепторам, которые специфически реагируют на слабое околопороговое раздражение.

Предполагается, что при раздражении этой разновидности рецепторов возникают ощущения щекотки и зуда.

Свободные нервные окончания имеют высокий порог раздражения и слабо реагируют на изменение интенсивности стимула. Быстро адаптирующиеся рецепторы (тельца Пачини, рецепторы волосяных фолликулов) служат датчиками скорости действующих стимулов, а медленно адаптирующиеся рецепторы (диски Меркеля, тельца Руффини) являются датчиками интенсивности действующего раздражителя. Наличие нескольких разновидностей рецепторов позволяет передавать афферентные сигналы о разных свойствах одного и того же раздражителя. Среди инкапсулированных окончаний различают тельца Пачини, Мейсснера, Руффини, диски Меркеля, тактильные тельца Пинкуса—Игго, колбы Краузе. В зависимости от строения и формы капсулы нервные окончания подвержены наиболее сильному воздействию либо в результате давления действующим перпендикулярно раздражителем, либо вследствие бокового смещения капсулы, которая играет роль механического преобразователя энергии внешних стимулов. Большинство инкапсулированных рецепторов содержится в лишенной волос коже пальцев рук и ног, ладоней и подошв, лица, губ, языка, сосков и половых органов, где они распределены с различной плотностью и на разной глубине. Тельца Пачини имеются также в сухожилиях, связках и брыжейке. Механорецепторы кожи различаются по скорости адаптации к действующему раздражителю. Быстроадаптирующиеся (фазные) рецепторы возбуждаются только в момент смещения кожи и волос и служат датчиками скорости воздействия стимула. Это свойство присуще тельцам Мейснера, рецепторам волосяных фолликулов и особенно тельцам Пачини, способным реагировать на изменения скорости продолжающего свое действие стимула. Медленно адаптирующиеся (тонические) рецепторы не прекращают генерировать потенциалы действия при продолжительном действии раздражителя, если он оказывает давление на кожу: такие рецепторы служат датчиками интенсивности действующего стимула (тельца Руффини, диски Меркеля).

Пространственный двухточечный порог в разных участках тела Площадь рецептивных полей сенсорных нейронов, иннервирующих тельца Мейснера и диски Меркеля, составляет в среднем около 12 мм2, а у нейронов с окончаниями в виде телец Пачини и Руффини она на порядок больше. Рецептивные поля различающихся своими рецепторами сенсорных нейронов перекрываются, поэтому при действии на кожу комплекса стимулов одновременно возбуждаются разные виды рецепторов, что позволяет ощущать все динамические и статические свойства такого комплекса. Обработка и анализ информации сигналов от различных рецепторов происходит на высших уровнях сенсорной системы, формирующих комплексное восприятие действующих на поверхность тела стимулов. Плотность меха-норецепторов в разных участках кожи не одинакова, чем определяются разные показатели пространственного дифференциального порога, т. е. наименьшего расстояния между двумя точками, раздражение каждой из которых ощущается раздельно. Приведенные в таблице данные не следует считать эталоном, поскольку дифференциальная чувствительность различается у разных людей. Инкапсулированные рецепторы иннервируются миелинизированными волокнами первичных сенсорных нейронов, которые проводят нервные импульсы в ЦНС со скоростью около 30—70 м/с. Немиелинизированные волокна передают потенциалы действия от свободных нервных окончаний со значительно меньшей скоростью — около 1 м/с, поэтому ощущение действующего на них стимула возникает относительно позже. Центральные отростки первичных сенсорных нейронов входят в спинной мозг в составе задних корешков и разделяются в задних рогах спинного мозга на коллатерали. Восходящие коллатерали достигают переключательных ядер заднего столба продолговатого мозга, откуда специфическая информация передается на противоположную сторону мозга по лемнисковому пути, поступает к проекционным ядрам таламуса, а затем в соматосенсорную кору, с участием которой формируется чувство осязания.

Дополнительные слои

За слоем с фоторецепторами идут слои, без которых работа всего световоспринимающего аппарата невозможна:

  • Наружная пограничная, или мембрана Везхова, разделяет слои друг от друга и необходима для обеспечения трансформации энергии химических связей в нервный импульс.
  • Наружный ядерный слой содержит ядра колбочек и палочек.
  • Наружный сетчатый слой (плексиформный) образован отростками фоторецепторов и биполярных нейронов.
  • Внутренний слой сетчатки содержит ядра биполярных нейронов.
  • Во внутреннем ретикулярном слое располагаются клетки, которые ограничивают светочувствительность сетчатки. Именно тут проходит граница между частями сетчатки, где есть сосуды и где их нет. И это последняя ступенька в обработке информации перед направлением ее в мозг.
  • Ганглиозный многополярный слой. Наибольшая его толщина в пять рядов клеток в районе центральной ямки сетчатки.
  • Волокнистый слой с волокнами зрительного нерва.
  • Последний слой – внутренняя мембрана, которая образована нейроглиальными (соединительными) клетками Мюллера и непосредственно прилегает к стекловидному телу.

Открываясь, чтобы впустить больше света

Ваши зрачки — это черные области перед глазами, которые пропускают свет. Они выглядят черными, потому что свет, который достигает их, поглощается внутри глазного яблока. Затем он преобразуется вашим мозгом в ваше восприятие мира.

Вы, наверное, заметили, что зрачки могут изменить размер в ответ на свет. Снаружи в яркий солнечный день ваши зрачки становятся очень маленькими. Это дает меньше света в глаза, так как есть много доступных.

Когда вы переходите в темное место, ваши зрачки открываются, чтобы стать как можно больше. Это расширение позволяет вашему глазу собирать больше света, чем там есть.

Но от самого маленького размера до самого широкого зрачка ваш зрачок может увеличить свою площадь всего лишь в 16 раз. Вы можете хорошо видеть поперечные изменения уровня освещенности гораздо больше, чем в миллион раз. Так что здесь должно быть что-то еще происходит.

Строение рецепторов


Палочки в радужном зрении не участвуют и отвечают за видимость и различие предметов в сумерках.
Анатомия рецепторов:

  • наружное поле (диск);
  • связующую зону;
  • внутреннюю;
  • базальная зона.

В длину одна палка 0,06 миллиметров, а диаметр — 0,002 мм. Эти фоторецепторы глаза крайне светочувствительны. Они воспринимают максимальное количество волн света, что предоставляет человеку возможность различать предметы в темное время суток. В рецепторах присутствует родопсин или зрительный пурпур, который содержится на мембранных дисках. В желтом пятне палочек практически нет. Под воздействием лучей он раздражается и помогает улавливать свет в ночное время.

Колбочки по строению схожи с палочками:

  • наружная зона;
  • связующая (перетяжка);
  • внутренняя;
  • базальная.

Длина рецепторов — 0,05 мм, а диаметр в широкой зоне составляет 0,004 мм. В дисках колбочек содержится йодопсин. Благодаря ему светочувствительные рецепторы обрабатывают поступающее изображение и изменяют его в нейронный импульс. Такая работа обеспечивает дневное видение и более точное изображение реальности. Колбочки улавливают красный и зеленый оттенков. Различают 3 вида йодопсина: эритролаб, хлоролаб цианолаб. Каждый из них отвечает за различие одного из 3-х основных оттенков: синего, красного и зеленого. Но если первые 2 вида были официально найдены учеными, то цианолаб еще не открыт, но уже имеет название.


Теория о двухкомпонентном восприятии основывается на том, что колбочка способна воспринимать 2 цвета – красный и зеленый.

Существует теория о двухкомпонентном восприятии цветов. Так как цианолаб еще не был найден, то приверженцы этой теории считают, что эритролаб и хлоролаб дают возможность глазу различать красный и зеленый спектры, а синий оттенок глаз улавливает с помощью выцветших родопсин (пигмента палочек). Эту гипотезу подтверждают исследования людей, что не различают синие цвета и плохо ориентируются в темноте.

География сетчатки

Строение и функции этой оболочки разные в зависимости от местонахождения. В центре расположена круглая зона диаметром около 2 мм, где находится оптический нерв. В этом месте нет светочувствительных рецепторов, это зона слепого пятна.

Левее слепого пятна на 4,5-5 мм находится фовеа или макула – центральная ямка сетчатки или желтое пятно. На самом деле это пятно диаметром до 5 мм, где нет кровеносных сосудов, но расположено максимальное количество световоспринимающих клеток. Центральная ямка – это всего 5 % оптической сетчатки, но именно она отвечает за наибольшую остроту зрения.

Когда стоит начать беспокоиться

Симптоматика патологий сетчатки не специфическая, и часто пациент долгое время не подозревает о существующей проблеме. Записаться к офтальмологу на обследование следует, если:

  • Появилось ощущение снижения общей остроты зрения.
  • Появляются вспышки, блики или молнии перед глазами.
  • Если поле зрения сузилось.
  • Появляются круги или темные пятна перед глазами.

Офтальмолог после осмотра назначит дополнительное обследование, которое включает офтальмоскопию, УЗИ глаз, флуоресцентную ангиографию, оптическую когерентную томографию. После чего может быть поставлен диагноз и начато лечение.

Leave a Comment